IV.2 APTITUDE DES SOLS

IV.21 GÉOLOGIE

La carte géologique du BRGM au 1/50 000 ème de Podensac situe le territoire communal sur les formations suivantes :

- Fy-z (alluvions actuelles et subactuelles),
- CF (Colluvions issues des nappes alluviales anciennes et des molasses),
- p-Fu (sables argileux, graviers et quelques galets),
- g3 (Molasse de l'Agenais).
- LP/Ft (Limons sur nappe alluviales anciennes).

IV.22 ETUDE DES SOLS

Objectif de l'étude pédologique

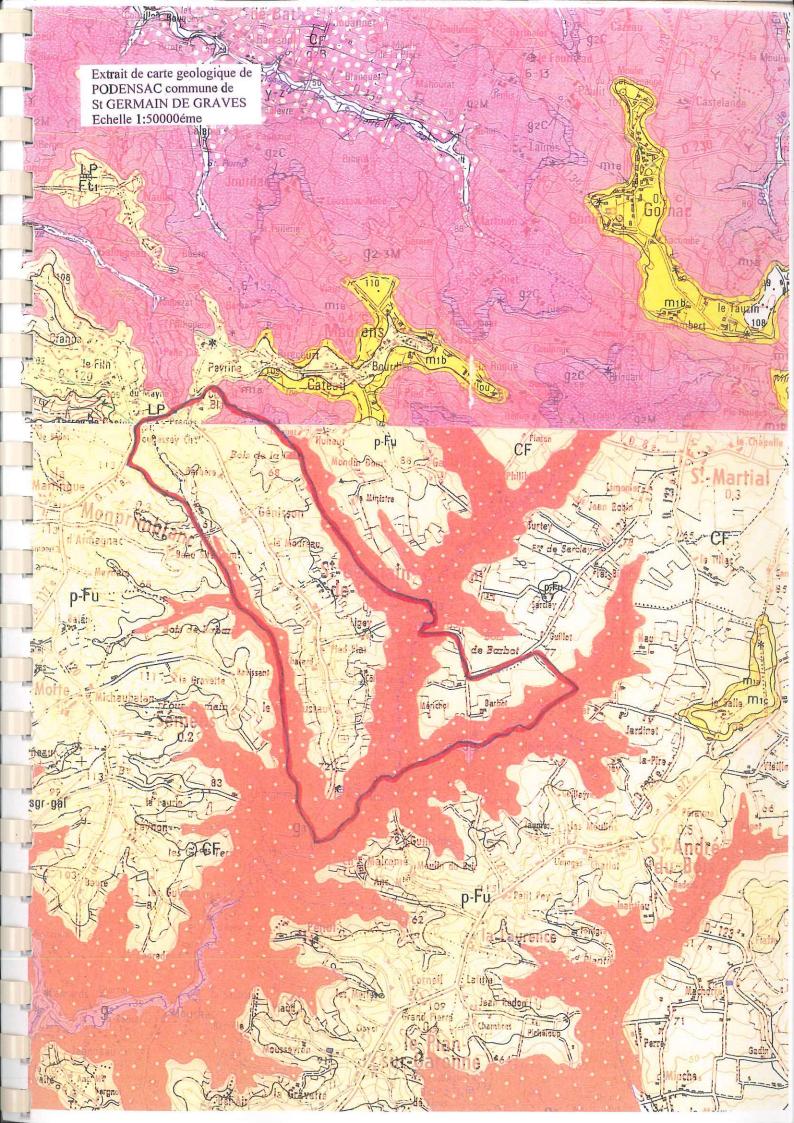
L'étude des sols a pour but de définir l'aptitude des sols à l'épuration et à la dispersion afin de préciser les dispositifs à mettre en place dans le cadre de solutions individuelles.

Ces données, confrontées aux données générales sur le milieu physique, permettront de définir l'aptitude à l'assainissement individuel des sites étudiés.

Méthodologie et technique de cartographie

La cartographie a été réalisée sur des fonds à l'échelle du 1/5 000 ème, à l'aide de sondages à la tarière à main (profondeur maximale 1,20 m.)

5 tests de percolation par la méthode PORCHET à niveau constant ont été réalisés pour apprécier la perméabilité des sols.


Pour chaque sondage, nous avons pris en compte les caractères morphologiques suivants :

- la nature et la profondeur d'apparition du substratum géologique (molasses, calcaires...)
- la succession verticale des différents horizons pédologiques, définis par leur texture (proportion d'argile, limons, sables), leur couleur, leur pierrosité, etc....
- l'intensité et la profondeur d'apparition des manifestations d'excès d'eau (hydromorphie) : taches rouille d'oxydation, concrétions ferromanganiques, zones réduites de gley, etc....

Définition des unités cartographiques

Les unités cartographiques regroupent les sondages ayant les mêmes caractères morphologiques, donc des comportements hydrodynamiques semblables. Quatre critères ont été retenus pour leur définition :

- le substrat géologique
- la profondeur du sol
- la succession des horizons
- l'hydromorphie

QUATERNAIRE ET FORMATIONS SUPERFICIELLES

FORMATIONS COLLUVIALES

Alluvions et colluvions F-C argilosableuses des vallons secs

Colluvions issues des См calcaires. marnocalcaires et molasses

1 - Colluvions issues des nappes alluviales anciennes et des molasses 2 - recouvrant en grande partie le Calcaire à astéries

FORMATIONS FLUVIATILES Holocène

Limons

sur nappes

alluviales

anciennes

Fy-z

Alluvions actuelles et subactuelles Argiles grises, tourbes

Fy

Alluvions récentes Argiles sableuses grises, tourbes

Pléistocène supérieur

Fx

Basse terrasse (Würm) Sables, graviers et gros galets

Pléistocène moyen

Movennes terrasses (Riss) Sables, graviers et gros galets (système Dordogne) Sables, graviers et galets

Fv

Haute terrasse (Mindel) Sables, graviers et galets rubéfiés

Pléistocène inférieur

Ft2

Très haute nappe alluviale Sables, graviers et galets rubéfiés

Ft₁

Très haute nappe alluviale Sables et graviers rubéfiés

TERTIAIRE

FORMATIONS MARINES Miocène inférieur

m₁b

Calcaires gréseux à miogypsines et faciès latéraux argilo-sableux

m_{1a}

Marnes à Ostrea Formation résiduelle argilo-sableuse carbonatée et faluns à huîtres

FORMATIONS FLUVIO-LACUSTRES

FORMATIONS LACUSTRES

92-3M

Molasses de l'Agenais, partie supérieure Molasses argilo-gréseuses carbonatées

Oligocène supérieur l.s.

Oligocène inférieur

92M

Molasses de l'Agenais, partie inférieure Molasses argilo-gréseuses carbonatées

m1aC

Calcaire de Monbazillac Calcaires beige clair, parfois rosâtres

Calcaire blanc de l'Agenais

Formation résiduelle blanchâtre

g2B

Calcaires à astéries Biocalcarénites iaunâtres et marno-calcaires

g2A

Marnes à huîtres et argiles vertes

91bM

Argiles sableuses verdâtres carbonatées et grès tendres

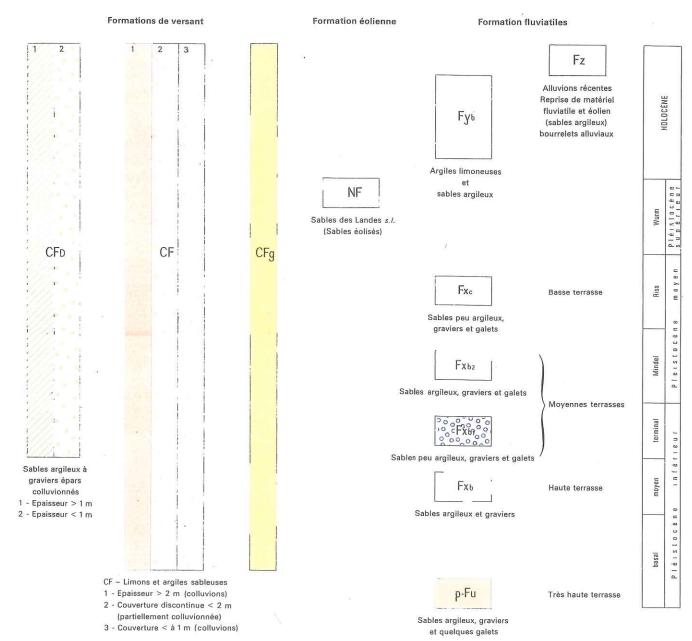
graM

Molasses du Fronsadais, partie supérieure Molasses argilo-gréseuses carbonatées jaunâtres à grises

Éocène supérieur

e7b-cM

Molasses du Fronsadais, parties inférieure et moyenne Argiles silteuses carbonatées jaunâtres à blanchâtres


e7a

Argiles à Palaeotherium Argiles carbonatées jaunes et vertes

g1C

Argiles et calcaires de Castillon Argiles vertes carbonatées, marnes blanches, calcaires blancs

QUATERNAIRE ET FORMATIONS SUPERFICIELLES

CFg – Eboulis d'origine mixte fluviatile et calcaire

TERTIAIRE

M1c	Miocène inférieur : Grès à Miogypsines (phase marine supérieure)		
M1b	Miocène inférieur marin (faciès"Burdigalien"): calcaires et calcaires grèseux		
M ₁₈	Miocène inférieur (faciès''Aquitanien'''): - Niveau supérieur lacustre : calcaires et marnes - Niveau inférieur marin et saumâtre : calcaires et marnes		
9	Oligocène supérieur (Stampien) : "Molasse de l'Agenais" et marnes à nodules d'Aillas : argiles sableuses à nodules et calcaires fluvio-lacustres		
g ₂	Oligocène supérieur (Stampien) : - calcaire à Astéries - calcaire à Archiacines		

Légende de la carte des sols

L'appellation de l'unité cartographique est composée de quatre symboles qui sont successivement :

- une lettre majuscule indiquant la nature de la roche mère
- un chiffre indiquant la profondeur du sol
- une lettre minuscule indiquant la succession des horizons
- un chiffre indiquant le degré d'hydromorphie (niveau d'engorgement)

Nature de la roche mère

En confrontant les données géologiques et le résultat de nos investigations, nous avons retenu les distinctions suivantes :

L : Recouvrement Limoneux,

T : Terrasses graveleuses,

Mo : Molasses argilo-sableuses,

Profondeur du sol

La profondeur du sol est déterminée par la profondeur d'apparition du matériau défini précédemment. Elle est indiquée par des chiffres arabes allant de 1 à 3.

1 : entre 0 et 50 cm de profondeur,

2: entre 50 et 100 cm de profondeur,

3 : supérieur à 100 cm de profondeur.

Succession des horizons

La succession des horizons définissant le type de sol (type pédogénétique) est représentée par les lettres minuscules suivantes :

a : sol peu évolué d'apports,

b : sol brun,

: sol brun lessivé à lessivé,

L'hydromorphie

C'est la manifestation d'un engorgement en eau du sol. Les horizons ainsi affectés présentent des caractères particuliers, directement liés à l'intensité et à la permanence de l'excès d'eau :

- * taches et bariolages gris et rouille, concrétions noirâtres : <u>hydromorphie temporaire</u> horizon à pseudo-gley,
- couleur gris bleutée généralisée avec taches rouille : <u>hydromorphie permanente</u> horizon nommé *gley*.

Ce caractère est donc essentiel dans l'appréciation du comportement hydrique du sol. Nous avons défini les classes d'hydromorphie suivantes, numérotées de 0 à 3 :

0: sol sain,

1: sol peu hydromorphe,

2 : sol hydromorphe,

3 : sol inondable.

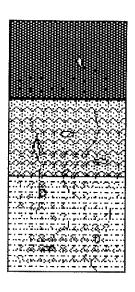
Exemple

L 2 1 2

L: Limon

2: apparaissant entre 50 et 100 cm

1: sol brun lessivé


2: sol hydromorphe

Les sols présents

a) Les sols lessivés sur limon et recouvrement limoneux sur Terrasses

Unité : L212, L/T212 Tests d'infiltration n° : 1, 4, 5

^{*}Caractères morphologiques - Profil type

HORIZON 1: AL de 0 à 30 cm

Couleur brun à brun clair. Texture limon moyen sableux. Structure polyédrique fine. Moyennement poreux. Nombreuses racines fines. Forte activité biologique. Apparition de tâches hydromorphie à la base du labour.

HORIZON 2 : S de 30 à 60 cm

Couleur brun jaunâtre à beige. Texture limon moyen sableux à limon argileux. Structure polyédrique moyenne. Peu poreux. Quelques racines fines. Taches d'oxydation. Peu poreux Apparition locale d'un horizon Bt caractérisant les sols lessivés.

HORIZON 3 : C au delà de 60 cm

Limon à limon argileux beige à gris bariolée sur des matériaux localement graveleux (L/T). Très peu poreux

*Caractères hydriques

Ces sols présentent des perméabilités très faibles.

Nous avons réalisé 3 tests d'infiltration par la méthode PORCHET à niveau constant, les résultats sont dans le tableau suivant :

Tableau 1

N° DU TEST	LIEU TEST	PROFONDEUR TEST (cm)	UNITE SOL	RESULTAT (en mm/H)
1	Pas de Nadau	70 .	L212	< 5
4	Cheval blanc	70	L212	< 5
5	Charrau	70	L212	< 5

^{*}Aptitude à l'assainissement

Ces sols ne présentent pas des caractéristiques hydriques permettant la mise en oeuvre de dispositifs individuels incluant une dispersion in-situ.

Ainsi nous retiendrons:

Unité : *L2l2*, *L/T2l2*.

Le **facteur limitant** réside dans la présence à faible profondeur d'hydromorphie. Assainissement individuel par filtre à sable drainé.

CLASSE D'APTITUDE III pour l'assainissement individuel (couleur orange).

c) Les sols bruns sur terrasses

Unités : T1b0

Tests d'infiltration n°: 2, 3

^{*}Caractères morphologiques - Profil type

HORIZON 1: AL 0 à 30-40 cm

Couleur brune à brun rougeâtre clair. Texture limon moyen sableux à limon argilo-sableux. Structure polyédrique subanguleuse Moyennement poreux. Quelques cailloux roulés

HORIZON 2: S 30-40 à 700-80 cm

Couleur brune à brun clair, argilo-sableuse à argileuse. Structure polyédrique. Moyennement poreux. Présence de cailloux roulés.

HORIZON 3: C >80 cm

Horizon hétérogène, de texture sablo-graveleuse couleur ocre brune unie. Moyennement poreux.

*Caractères hydriques

Ces sols sont localement perméables et présentent des variations de faciès importantes Nous avons réalisé 2 tests d'infiltration par la méthode PORCHET à niveau constant, les résultats sont dans le tableau suivant :

Tableau 2

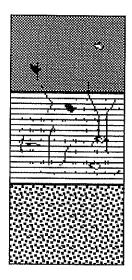
N° DU TEST	LIEU TEST	PROFONDEUR TEST (cm)	UNITE SOL	RESULTAT (en mm/H)
2	Cailleau	70	T1b0	10
3	Bourg Est	70	T1b0	10

^{*}Aptitude à l'assainissement

Ainsi nous retiendrons:

Unités: T1b0.

Le facteur limitant réside dans la présence locale d'hydromorphie.


Assainissement individuel par filtre à sable drainé ou tranchées d'épandage surdimensionnées.

CLASSE D'APTITUDE I/III pour l'assainissement individuel (couleur vert hachuré orange).

c) Les sols bruns sur molasses argilo-sableuses

Unité: Mo1b2,

*Caractères morphologiques - Profil type

HORIZON 1: AL de 0 à 30 cm

Couleur brun à brun beige. Texture limon argilo-sableux. Structure polyédrique subanguleuse moyenne. Peu poreux. Nombreuses racines fines. Forte activité biologique. Apparition de tâches d'hydromorphie.

HORIZON 2 : S de 30 à 65 cm

Couleur brun beige à brun ocre. Limon argilo-sableux à argile limoneuse. Structure polyédrique moyenne à grossière. Nombreuses tâches d'hydromorphie et concrétions ferromanganiques. Peu poreux à très peu poreux. Apparition locale d'un horizon Bt (sols lessivés).

HORIZON 3 : C au delà de 65 cm

Argile sableuse à argile limoneuse et argile lourde panachées, compact et plastique.

*Caractères hydriques Ces sols sont très peu perméables.

*Aptitude à l'assainissement

Ces sols ne présentent pas de caractéristiques hydriques permettant la mise en oeuvre de dispositifs individuels incluant une dispersion in-situ.

Ainsi nous retiendrons:

Unités : Mo1b2.

Le facteur limitant réside dans la présence à faible profondeur d'hydromorphie. Assainissement individuel par filtre à sable drainé.

CLASSE D'APTITUDE III pour l'assainissement individuel (couleur orange).

IV.23 CARTE DES SOLS ET D'APTITUDE A L'ASSAINISSEMENT INDIVIDUEL

La carte comporte une légende double. Elle contient :

- des indications correspondant à la légende "SOL" :

Le contenu pédologique de chaque unité est donné par la notation en 4 critères :

Substrat - profondeur - type de sol - hydromorphie

- une couleur visualisant immédiatement l'aptitude du sol à l'assainissement individuel selon une classification en catégories.

LÉGENDE:

APTITUDE DES SOLS A L'ASSAINISSEMENT INDIVIDUEL

CATÉGORIE I - Aptitude satisfaisante - VERT :

Site satisfaisant permettant l'épuration et la dispersion des effluents. Dispositif préconisé : **Tranchées d'épandage à faible profondeur**

Dispersion: in-situ par le sous-sol

CATÉGORIE II - Aptitude moyenne - JAUNE

Site globalement satisfaisant, avec toutefois quelques contraintes pédologiques (Epaisseur de sol réduite).

Dispositif préconisé : Filtre à sable vertical non drainé

Dispersion: in-situ par le sous-sol

CATÉGORIE III - Aptitude mauvaise - ORANGE

Site présentant des contraintes pédologiques importantes (hydromorphie, perméabilité) rendant nécessaire l'utilisation de dispositifs spéciaux pour l'épuration et la dispersion des effluents.

Dispositifs préconisés : filtre à sable vertical ou horizontal drainé en fonction des possibilités et des niveaux d'exutoire. La mise en place du filtre à sable horizontal drainé doit être exceptionnelle.

Dispersion: exutoire de surface

CATÉGORIE I/III - Aptitude médiocre - VERT HACHURE ORANGE

Site présentant des contraintes pédologiques importantes (hydromorphie, perméabilité) rendant nécessaire l'utilisation de dispositifs spéciaux pour l'épuration et la dispersion des effluents.

Dispositifs préconisés: Tranchées d'épandage surdimensionnées ou filtre à sable vertical ou horizontal drainé en fonction des possibilités et des niveaux d'exutoire. La mise en place du filtre à sable horizontal drainé doit être exceptionnelle.

Dispersion: in-situ ou exutoire de surface

CATÉGORIE IV - Aptitude nulle - ROUGE

Zones inondables, nappe à faible profondeur.

Dispositif préconisé : Tertre d'infiltration

Dispersion: in-situ

IV.24 CONCLUSIONS SUR LES SOLS ET LEUR APTITUDE A L'ASSAINISSEMENT INDIVIDUEL

L'aptitude des sols à l'assainissement individuel sur la commune de Saint Germain de Grave apparaît globalement médiocre à mauvaise, selon les secteurs, pour la mise en œuvre de dispositif incluant une dispersion in-situ.

Dans les sols peu perméables, on aura recours à des filières de substitution de type filtre à sable drainé (couleur orange sur le plan).

Ces filières, bien que techniquement présentes dans le DTU 64.1, ne sauraient être généralisées à l'ensemble des habitations de la commune, en raison des problèmes multiples qui ne manqueraient pas d'apparaître :

- multiplication des points de rejets (problèmes d'autorisation),
- difficultés pour l'entretien des fossés,
- écoulement permanents dans les fossés avec risques sanitaires,
- pérennité des dispositifs, liée à la qualité de l'entretien,
- coût de ces filières de traitement.

- ...

De plus, il faut tenir compte de la position de la M.I.S.E (Mission Interservices de l'Eau) concernant les filtres à sable drainés :

"La réalisation d'un lit filtrant drainé individuel ou collectif sera seulement envisagée pour :

- les maisons existantes, car elles bénéficient en terme juridique du droit d'occuper le sol et la réalisation de ce dispositif sera une amélioration de l'existant,
- les maison neuves si l'exutoire est pérenne".

Ainsi, à moins qu'une étude de détail à la parcelle prouve la faisabilité d'un assainissement individuel par épandage souterrain, l'application de cette directive conduira à refuser tous permis de construire nouveaux sur les secteurs où l'infiltration ne pourra être envisagée in-situ et où l'exutoire potentiel n'est pas pérenne.

Le descriptif technique est présenté en annexe 1.